THE UNITED REPULIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

131/3B

ACTUAL PRACTICAL B

(For Both School and Private Candidates)

Time: 3:20 Hours

Friday, 15th May 2015 a.m.

Instructions

- This paper comists of three (3) questions.
- 2. Answer all questions.
- Question Number 1 carries 20 marks and the other two (2), 15 marks each.
- Calculations should be clearly shown.
- Mathematical tables and non-programmable calculators may be used.
- 6. Cellular phones are not allowed in the examination room.
- Write your Examination Number on every page of your answer booklet(s).
- 8. Use the following:

 $\pi = 3.14$

Specific heat capacity of water, C = 42001Kg K

Specific heat capacity of copper, C = 420JKg 1K1

In this experiment you are required to determine the acceleration due to gravity.

1

- Suspend the perforated metre rule provided using a string so that it balances Proceed as follows:
- horizontally and hence mark the centre of mass G of the rule. (n)
- Then suspend the perforated metre rule using last hole from the centre of gravity on the per fixed on the stand so that it is free to swing in a vertical plane. Measure the distance h from the point of suspension to the centre of mass G of the rule. (b)
- Allow the rule to swing in the vertical plane with a small angle of deflection θ from the vertical plane. Using a stop watch or clock, measure the time for 20 oscillations of (0) the metre rule.
- Repeat procedures in 1 (b) and (c) above using 4 holes at an interval of 0.1m. (d)
- Tabulate your data as shown in Table 1. (c)

Table 1

Hole	h (m)	Time for 20 oscillations (sec)	Period T (sec)	h ² (m ²)	T ² h (sec ² m)
1" hole					
2 nd hole					
3 rd hole				-	
4th hole	A Maria	THE RESERVE	W. C.		
5th hole					

- Plot a graph of hagainst Th. m (1)
 - Calculate the slope S of the graph. (III)
 - Using the formula $g = 4 \pi^3 S$, calculate the acceleration due to gravity. (iii)
 - (iv) From the graph, obtain the value of h when T h is zero.
 - What does the value of h obtained in 1 (f) (iv) represents? (x)

 In this experiment you are required to plot the cooling curves for hot water in the calorimeter when the calorimeter is:

A:
$$\frac{1}{2}$$
 full of water,

B:
$$\frac{2}{3}$$
 full of water.

Proceeds as follows:

- (a) Half fill a weighed calorimeter with water so that the temperature after this operation is about 60°C. Observe and record the temperature of the contents at intervals of 2 minutes as it cools over the temperature range of 60°C to 45°C, then weigh the calorimeter and its contents. Finally find the mass of water.
- (b) Repeat the procedures in 2 (a) with the calorimeter about $\frac{2}{3}$ full of water.
- (c) Plot both cooling curves in the same frame of axes.
 - (i) Use the two curves to obtain the ratio ($\frac{1}{2}$ full to $\frac{2}{3}$ full of water) of times taken to cool over the following temperature intervals:

- Calculate the ratio of the total thermal capacities in the two experiments.
- (iii) Give comment(s) on the ratios obtained in 2 (c) (i) and (ii).
- (iv) Briefly explain why the shapes of the two curves are not the same.
- The aim of the experiment is to find the resistivity of the wire using the metre bridge.

Proceed as follows:

Figure 2

Set up the circuit as shown in Figure 2 where R is 2Ω standard resistor and x is the length of the resistance wire. Find the balance length, I, for x = 20 cm. Repeat the same procedures for other four values of x at the intervals of 10 cm.

- (a) Tabulate the values of x and $\frac{1}{1}$.
- (b) Plot a graph of against x.
- (c) Find the equation of the graph.
- (d) Using the micrometer screw gauge, find the radius of the resistance wire.
- (e) From the graph, calculate the resistivity of the wire.